An Employer’s Guide to Developing an Employee Right-to-Know Program
This material can be provided to you in different formats (Braille, large print or audio) if you call the MNOSHA Training/Outreach Office at (651) 284-5050; toll-free at 1-877-470-6742; or via TTY at (651) 297-4198.

Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission of the Minnesota Department of Labor and Industry or MNOSHA. Source credit is requested but not required.

For more information, contact:

Minnesota Department of Labor and Industry
Occupational Safety and Health Division
443 Lafayette Road N.
St. Paul, MN 55155-4307
Phone: (651) 284-5050
Toll-free: 1-877-470-6742
Email: osha.compliance@state.mn.us
Website: www.dli.mn.gov
Purpose of this manual

This manual is designed to assist employers in the process of developing and successfully implementing an Employee Right-to-Know (ERTK) program.

Section 1:
Introduction and overview ... Page 3

Section 2:
Developing a written program ... Page 4

Section 3:
Training .. Page 6

Section 4:
Training, information requirements for hazardous substances Page 9

Section 5:
Training, information requirements for harmful physical agents Page 13

Section 6:
Training, information requirements for infectious agents Page 16

Appendix A:
Material safety data sheets ...App. A – Page 1
Sample material safety data sheet formApp. A – Page 5

Appendix B:
Material safety data sheet checklist...App. B – Page 1

Appendix C:
Industrial sources of nonionizing radiationApp. C – Page 1

Appendix D:
Stress evaluation – heat ..App. D – Page 1

Appendix E:
Sources of information ...App. E – Page 1

Glossary of terms and abbreviations
Section 1: Introduction and overview

The Employee Right-to-Know Act was passed by the Minnesota Legislature in 1983 and is intended to ensure employees are aware of the dangers associated with hazardous substances, harmful physical agents or infectious agents they may be exposed to in their workplaces.

The Employee Right-to-Know Act applies to all employers in Minnesota with the exception of federal agencies.

To comply with the Employee Right-to-Know (ERTK) standard, employers must identify the hazardous substances, harmful physical agents and infectious agents that are present in the workplace and provide information and training to employees who are “routinely exposed” to those substances or agents. A written ERTK program is required.

“Routinely exposed” means that a reasonable potential exists for exposure to hazardous substances, harmful physical agents or infectious agents during the normal course of the employees’ work assignments. Exposure above the Minnesota OSHA permissible exposure limits (PELs) is not necessary before implementing ERTK provisions. Routinely exposed includes working in areas where hazardous substances have been spilled and assignment to cleaning up leaks and spills. It does not include a simple walk-through of an area where a substance or agent is present and no significant exposure occurs.

In brief, the Employee Right-to-Know program must include:

- an inventory of hazardous substances and/or agents that exist in the workplace;
- identification of employees who are routinely exposed to those substances or agents;
- a system for obtaining and maintaining written information about the substances and agents employees may be exposed to in the workplace;
- methods for making ERTK information readily accessible to employees in their work areas;
- a plan for providing initial, pre-assignment and annual training of employees; and
- implementation and maintenance of a labeling system or other warning methods.

The following sections of this manual provide more information about each of these elements.
Section 2: Developing a written program

Employers must develop and implement a written Employee Right-to-Know program for hazardous substances, harmful physical agents and infectious agents that are present in the workplace.

Written ERTK program must include

1. An outline of training that will be provided to employees for hazardous substances, harmful physical agents and infectious agents. More information about the training requirements of ERTK is provided in Sections 3 through 6.

2. A list of the hazardous substances known to be present, using an identity (e.g., chemical name, common name, etc.) that is referenced on the appropriate material safety data sheet (MSDS). This list may be compiled for the workplace as a whole or for individual work areas. More information about material safety data sheets is provided in Section 4 and Appendix A.

3. A description of the labeling system or other forms of warning used in the workplace. Details about the labeling requirements for hazardous substances, harmful physical agents and infectious agents are provided in Sections 4, 5 and 6, respectively.

4. The methods the employer will use:
 - to inform employees of the hazards of infrequent or nonroutine tasks that involve exposure to hazardous substances, harmful physical agents or infectious agents; and
 - to inform employees of the hazards associated with substances contained in unlabeled pipes in their work areas.

5. In addition, multi-employer workplace employers must describe the methods the employer will use to:
 - inform other employers with employees working at the workplace of the hazardous substances, harmful physical agents or infectious agents employees may be exposed to while performing their work;
 - provide other employers with MSDSs or other written information, or where it will be located in the workplace;
 - inform other employees of required precautionary measures that must be taken during normal operating conditions and in foreseeable emergencies; and
 - inform the other employers of the labeling system used in the workplace.

Availability of written program

- The ERTK program must be maintained at the worksite.
The written ERTK program must be available to employees or their designated representatives and Minnesota OSHA.

Periodic review

Because of the changing nature of the workplace, the ERTK program will be an ever-changing program. New substances will be introduced, currently used substances will be replaced or totally eliminated from use, etc. The written ERTK program should, therefore, be periodically reviewed to removed outdated information, insert new information, update training records, etc. (The recommendation is to update annually, when the annual ERTK update training is conducted.) When outdated MSDS information is removed from the active file to records retention, the dates of active use should be noted on the individual MSDS. See Section 4 regarding retention of MSDSs.

Note: If employees are exposed to blood as part of their job duties, the Occupational Exposure to Bloodborne Pathogens standard, 29 CFR 1910.1030, requires employers to develop and implement an Exposure Control Plan. If all infectious agents to which employees may be exposed are covered as part of the Exposure Control Plan, that plan will be considered as meeting the ERTK requirement for a written program for infectious agents.
Section 3: Training

Every employee who works with or is routinely exposed to hazardous substances, harmful physical agents or infectious agents as part of their job responsibilities must receive Employee Right-to-Know training.

The training must be made available by and at the cost of the employer. If employees are required to attend training at times other than their normal work schedule, they must be compensated for that time (e.g., overtime, equivalent time off, etc.).

Note: Details of the training required for hazardous substances, harmful physical agents and infectious agents is provided in Sections 4, 5 and 6.

ERTK training must be provided:

- in English or a language understood by employees;
- for the hazardous substances, harmful physical agents and infectious agents to which employees may be exposed in the workplace; and
- for temporary and seasonal employees who are assigned to tasks that may expose them to hazardous substances, harmful physical agents or infectious agents.

Frequency of ERTK training:

- before an employee’s initial assignment to a workplace where they may be routinely exposed to a hazardous substance, harmful physical agent or infectious agent;
- before any new or additional hazardous substance or agent is introduced into the workplace to which the employee may be routinely exposed; and
- updated *annually* (annual update training may be brief summaries of information included in initial and/or previous training sessions).

Training records

- Training records must be maintained by the employer and retained for *three* years.
- Training records must include:
 - the dates training was conducted;
 - the name, title and qualifications of the person who conducted the training;
 - the names and job titles of employees who completed the training; and
Upon completion of ERTK training, employees should:

- be aware of the hazards they are exposed to;
- know the short- and long-term effects of exposure to substances or agents and how to protect themselves from over-exposure (e.g., appropriate personal protective equipment and/or clothing, etc.);
- know how to obtain, read and use information on labels, material safety data sheets or other reference materials; and
- know and follow appropriate work practices.

Audiovisuals and written materials as ERTK training

- Giving an employee a data sheet, package insert, reference manual or other printed material to read does not meet the ERTK training requirements.
- It is not acceptable to have employees watch a video that does not include specific information about the substances and agents the employee is exposed to in the workplace as the only method of training.
- Audiovisuals, interactive videos, printed materials, etc., may be used as “part” of the ERTK program if they are supplemented by specific information related to the employees’ job duties and related exposures.

- Training must include an opportunity for employees to ask questions to ensure they understand the information presented to them.

Exceptions

- Technically qualified individuals (TQIs) – TQIs are individuals who, because of their training, education and experience, are deemed to be knowledgeable in the hazards associated with hazardous substances, harmful physical agents or infectious agents.

 The only individuals who may claim TOI status are: physicians, dentists, pharmacists and lead research individuals.

 Employers are not required to provide ERTK training to TQIs. However, they must be notified when the training is going to be given to other employees and allowed to attend if they wish.

Note: The TQI exemption applies only to ERTK training and has no affect on any other OSHA standard that requires training of employees. For example, employees who are exposed to bloodborne pathogens (which are infectious agents) must be trained.
Farms – Farming operations that employ 10 or fewer employees are exempt from all provisions of ERTK with the exception that label information must be provided to employees or their representatives. Farming operations employing more than 10 employees or operating a temporary labor camp and employing any of its residents, must comply with the Farming Operations Training Plan standard, Minnesota Rules 5206.1300 to 5206.1900.

Waste service employers – Employers that collect, process or dispose of waste regulated under the federal Resource Conservation and Recovery Act are exempt from the hazardous substances and harmful physical agents training and information requirements of ERTK. Waste service employers include garbage and rubbish collectors, landfill operators, hazardous waste transporters and independent testing laboratories or government agencies that visit hazardous waste sites. To qualify for exemption under ERTK, waste service employers must develop and implement a training program for employees and submit that program to MNOSHA for approval.

Note: The exemption from ERTK requirements for waste service employers does not extend to any other OSHA standard. For example, waste service employers must comply with the Occupational Exposure to Bloodborne Pathogens standard, 29 CFR 1910.1030, if employees have the potential for exposure to blood as a result of their job responsibilities.
Section 4: Training, information requirements for hazardous substances

Step 1. Inventory for hazardous substances

✓ Conduct an inventory, or survey, to identify and list all hazardous substances your employees may use or come in contact with in your facility. Include hazardous substances that are generated in the work operation but are not in containers (e.g. welding fume, wood dust, carbon monoxide generated by propane or gas powered vehicles, or nitrogen dioxide from diesel powered vehicles).

✓ Develop procedures to keep your list current. When new substances are used, add them to your list. Conversely, when substances are no longer used they should be removed from the list. (See note below.)

Step 2. Material safety data sheets

✓ Request material safety data sheets (MSDSs) from the chemical manufacturer or distributor of all the hazardous substances identified in the inventory. (Manufacturers and distributors are required to provide an MSDS at the time of the first shipment and whenever the information on the MSDS changes.)

✓ Develop a routine procedure for requesting MSDSs each time a new substance is ordered. Remove MSDSs for substances that are no longer used or available in the workplace.

Note: MSDSs are considered to be “exposure records” under 29 CFR 1910.1020(c)(5)(iii), Access to Employee Exposure and Medical Records, and, as such, must be retained for 30 years. However, in lieu of keeping all MSDSs for 30 years, the intent of 29 CFR 1910.1020 can be met by keeping three key pieces of information: (1) the identity (chemical name, etc.) of the substance or agent; (2) where it was used; and (3) when it was used. Employers may wish to consider including this information as part of the hazardous substance list, retain the list for 30 years and discard the MSDS.

✓ MSDSs must be current and accurate, and all required sections on the MSDS must be completed. (Review the completeness of MSDSs using the checklist in Appendix B.)

✓ MSDSs must be readily accessible to employees in their work areas. If desired, MSDS information may be made available on computer, display terminals, etc., as long as employees know how to access the information.

✓ In those workplaces where employees are required to handle or mix drugs in powder or liquid form in the course of assigned job duties, the package insert that generally is included in the drug package may be substituted for the MSDS if that package insert includes all information needed for training as outlined in Step 4.
✓ It is not necessary to obtain MSDSs for:

- products employees bring into the workplace for their personal use;
- consumer products or products sold or used in retail establishments if they are used in a manner that is comparable to typical consumer use (e.g., same frequency, concentration, etc.);
- articles that contain a hazardous substance in solid form that is not released (e.g., hardware, equipment, etc.);
- substances bound and not released under normal conditions of use (e.g., adhesive tape, vinyl upholstery, tires, etc.);
- waste material regulated under the Resource Conservation and Recovery Act (RCRA);
- substances in sealed packages that are not opened; and
- substances present in a physical state, volume or concentration that does not present a hazard (e.g., very small quantity, solids, diluted substances that present no adverse health affects, etc.).

✓ A master file should be maintained if individual MSDSs are placed in particular departments or areas.

Step 3. Labeling

✓ Check all incoming shipments of hazardous substances to be sure they are labeled. Labels on containers received from manufacturers or importers must include:

- the identity (name) of the hazardous substance;
- the appropriate hazard warnings (e.g. flammable, causes lung damage, irritates skin, etc.); and
- the name and address of the chemical manufacturer, importer or other responsible party.

✓ Stationary process containers within a work area that have similar contents and hazards may be labeled by use of signs, placards or other alternative identification means as long as the method used identifies the substance in the container and provides the appropriate hazard warning.

✓ Immediate-use containers (test tubes, beakers, graduates, vials, pitchers, pails or similar containers that are routinely used and reused) do not have to be labeled if:
• they are used only to transfer a hazardous substance from a labeled container;
• they remain under the control of the person who transferred the substance; and
• they are only used during the work shift in which the transfer takes place.

✓ Pipes or piping systems need not be labeled but their contents must be included in employee training.

✓ Where labeling is not practical or feasible, such as for carbon monoxide from lift trucks or welding operations, warning signs or equivalent warning methods must be used.

Step 4. Employee training

✓ Information that must be included in the training program for all employees routinely exposed to hazardous substances includes:

• a summary of the ERTK standard and the employer’s written ERTK program;
• specific information from the MSDSs of the hazardous substances employees may be exposed to, including
 - the name or names of substances, including any generic or chemical name, trade name and commonly used name,
 - the level, if known, at which exposure to the substance has been restricted or, if no standard has been adopted, according to guidelines established by competent professional groups,
 - known acute (extremely severe, reaching crisis rapidly) and chronic (prolonged, lingering) effects of exposure at hazardous levels, including routes of entry,
 - known symptoms,
 - any potential for flammability, explosion or reactivity of the substance,
 - appropriate emergency treatment,
 - known proper conditions of use and exposure to the substance,
 - procedures for cleanup of leaks and spills and
 - the name, phone number and address of a manufacturer of the hazardous substance; and
• where a written copy of all of the above information (e.g., the MSDS) is located in the work area or facility and how employees can access that information.
✓ Training must also cover the hazards associated with substances in unlabeled pipes in the work areas.

✓ Training can be conducted on each specific substance found in the workplace or it may be conducted by categories of hazards (e.g., carcinogens, sensitizers, acutely toxic agents). (This approach to training may be especially useful when training employees about the types of hazards they may encounter at another employer’s worksite.)

✓ Employees who work in operations where they handle only sealed containers (such as warehousing) are exempt from the requirements of ERTK. However, if a spill or leak of a hazardous substance occurs, any employee involved in its cleanup must be trained.
Section 5: Training, information requirements for harmful physical agents

Step 1. Identify all physical agents

ERTK restricts coverage of harmful physical agents to only four because the Employee Right-to-Know Act restricts harmful physical agent coverage to those physical agents for which a separate standard has been adopted and exposures are expected to approximate either the action level or permissible exposure limit at some time during the work year.

The four harmful physical agents subject to ERTK coverage are the following.

- Noise – Conduct initial evaluations to identify employees who are exposed to noise at or above 85db averaged over eight working hours. (If noise levels exceed 85db, compliance with the Occupational Exposure to Noise standard, 29 CFR 1910.95, is required.)

- Heat – List areas of potential excessive heat exposure, considering temperature of the work environment, season of the year and work activity. (See Appendix D for more information and exposure limits.)

- Ionizing radiation – List all potential sources of X-rays and radioactive materials. The most common uses of ionizing radiation occur in hospitals and dental offices with X-ray equipment and radioactive sources for nondestructive testing of welded seams, such as in pipes. (See OSHA Standard 29 CFR 1910.1096.)

Step 2. Labeling

Ensure all equipment or work areas that generate harmful physical agents at a level that may be expected to approximate or exceed the permissible exposure limit or applicable action level are labeled.

The label shall include the name of the physical agent and appropriate hazard warning.

Examples of labels or signs for a physical agent:

- for equipment or a work area where there is a reasonable potential for exposure to heat at a level that may be expected to approximate or exceed the heat stress standard – “POTENTIAL HEAT STRESS AREA – TRAINING REQUIRED”; and

- for equipment or work areas where there is a reasonable potential for exposure to noise at a level that may be expected to approximate or exceed the permissible exposure limit or action level – “HIGH NOISE AREA – TRAINING REQUIRED”
Step 3. Training

✓ Manufacturers of equipment that generate a harmful physical agent must provide the purchasing employer with information necessary to comply with the training requirements. This information must be provided at the time of purchase.

✓ Employers must conduct initial and on-going evaluations to determine if employees are routinely exposed to harmful physical agents at levels that approximate or exceed the permissible exposure limit or applicable action level and provide training to those employees.

✓ ERTK requires the following information to be included in training about harmful physical agents:

- the name or names of the physical agent, including any commonly used synonym;
- the level at which exposure to the physical agent has been restricted;
- the known acute (extremely severe, reaching crisis rapidly) and chronic (prolonged, lingering) effects of exposure at hazardous levels;
- known symptoms;
- appropriate emergency treatment;
- known proper conditions for exposure to the physical agent;
- the name, phone number and address, if appropriate, of a manufacturer of the equipment that generates the harmful physical agent; and
- where a written copy of all of the above information is kept in the work area. (Written information must be available to employees in the area or areas in which the harmful physical agent is present and where the employees may be exposed to the agent through use, handling or otherwise.)

✓ The following are examples of information that should be included for each of the harmful physical agents covered under ERTK.

- Noise:
 - when noise levels exceed 85db over an eight-hour period;
 - identity of areas of potential over-exposure;
 - the effects of noise on hearing;
 - the purpose of hearing protection, advantages/disadvantages of various types;
 - instructions about selection, fitting, use and care of hearing protection; and
 - purpose of audiometric testing and test procedures.
- **Heat stress:**
 - identification of heat disorders and how to avoid them;
 - symptoms of over-exposure;
 - cause of heat stress; and
 - prevention measures the employer has implemented (including engineering controls and work/rest patterns).

- **Ionizing/nonionizing radiation:**
 - identity of sources;
 - exposure limits;
 - health effects of exposure;
 - emergency procedures;
 - safety procedures and control measures; and
 - personal protective equipment.
Section 6: Training, information requirements for infectious agents

Step 1. Identify all infectious agents

Employers must evaluate the workplace for the presence of infectious agents employees may be exposed to at work.

- Infectious agents include bacterial, viral, fungal, parasitic and rickettsial agents.
- A list of infectious agents is included in the ERTK standard (Minnesota Rules 5206.0600, subpart 4) and includes the most common infectious agents that may be encountered in Minnesota.

Infectious agents requirements of ERTK apply to all employers that have employees potentially exposed to infectious agents. This means infectious agents training must be provided to employees of correctional facilities and group homes, to firefighters and law enforcement personnel, and to employees who are assigned to a first aid or first responder team.

Step 2. Labeling

Labeling of infectious waste (e.g., labeled with the biohazard symbol) must comply with the requirements of the Occupational Exposure to Bloodborne Pathogens standard, 29 CFR 1910.1030, and the Minnesota Infectious Waste Control Act.

Step 3. Training

Information required as part of the ERTK infectious agents training program is identical to training for employees exposed to blood required by the Occupational Exposure to Bloodborne Pathogens standard, 29 CFR 1910.1030.

- An employer may conduct one training program that covers all infectious agents to satisfy both standards.

Information that must be included in the training for infectious agents includes an explanation of:

- the employer’s ERTK program for infectious agents;
- the epidemiology and symptoms of infectious diseases including hazards to special at-risk employee groups;
- appropriate methods of recognition of tasks and other activities that may involve exposure to infectious agents, including blood and other infectious materials;
- the chain of infection, or infectious disease process, including agents, reservoirs, modes of escape from reservoirs, modes of transmission and modes of entry into the host and host susceptibility;
the use and limitations of control methods that prevent or reduce exposure including universal precautions, engineering controls, appropriate work practices, personal protective equipment and housekeeping;

the basis for selection of personal protective equipment including its use, types of equipment available, location of equipment, and decontamination and disposal;

the proper procedures for clean-up of blood or body fluids;

recommended immunization practices;

procedures to follow if an exposure incident occurs, including when, how and to whom the incident should be reported, and post-exposure evaluation and medical followup that will be available;

the appropriate actions to take and people to contact in an emergency involving potentially infectious materials;

signs, labels, tags or color coding used to denote biohazards; and

where employees can find a written copy of the above information (e.g., reference documents such as “The Control of Communicable Diseases in Man”), the employer’s written ERTK program, the ERTK standard and the person to contact with questions.

Training sessions must allow employees an opportunity for interactive questions and answers with the person conducting the training session.
Material safety data sheets

The material safety data sheet (MSDS) is a detailed information bulletin prepared by the manufacturer or importer of a chemical that describes the physical and chemical properties, health hazards, routes of entry, precautions for safe handling and use, emergency and first-aid procedures, and control measures. This information is not only helpful in selecting appropriate products, but provides employers and employees with the facts they need to use, store or dispose of the substance safely and to respond to an emergency.

✓ **Employers** must maintain a complete and accurate MSDS for each hazardous substance used in their facility and are entitled to obtain this information automatically upon purchase of the material.

✓ **Manufacturers** (anyone that produces, synthesizes, extracts or otherwise makes, processes, blends, packages or repackages) of hazardous substances or equipment that generates a harmful physical agent are required to provide employers that use their products with complete, up-to-date MSDSs.

✓ When an employer is unable to obtain a MSDS from a supplier or manufacturer, he or she should submit a written complaint, with complete background information, to the nearest Minnesota OSHA office. (Addresses and phone numbers are included in Appendix E.)

✓ When new and significant information becomes available concerning a product’s hazards, chemical manufacturers, importers or distributors must add it to their MSDS within three months and provide it to their customers with the next shipment of the product.

Note: If the name or identity of a hazardous substance is considered proprietary (trade secret) by the manufacturer, that information can be registered as a trade secret with the Department of Labor and Industry. Formulations and procedures are automatically considered trade secret and need not be registered. Information about registering trade secrets may be obtained from any Minnesota OSHA office.

To meet the intent of the Employee Right-to-Know standard, the MSDS must meet all requirements of the federal OSHA Hazard Communication standard, 29 CFR 1910.1200. This standard does not prescribe the precise format for the MSDS but does prescribe the information that must be provided. (A checklist to aid in determining whether all required information is provided can be found in Appendix B. A “sample” MSDS form that includes blanks for all required information can be found on page 5 of this Appendix.

To meet the requirements of ERTK and 29 CFR 1910.1200, the MSDS must be in English or a language understood by employees; must be current and accurate, and all sections of the MSDS completed; and must include the following information.
Section I. Manufacturer’s identity

✓ Manufacturer’s name, address, information telephone number and emergency telephone number

✓ Date the MSDS was prepared

Section II. Hazardous ingredients/identity information

✓ The identity used on the label

✓ Chemical and common names of the hazardous ingredients

 ▪ For mixtures tested as a whole:
 – chemical and common names of the ingredients that contribute to the known hazards;
 – common names of the mixture itself.

 ▪ For mixtures not tested as a whole:
 – chemical and common names of all ingredients that are health hazards (1 percent concentration or greater), including carcinogens (0.1 percent concentration or greater); and
 – chemical and common names of all ingredients that are health hazards and pose a risk to employees, even though they are present in the mixture in concentrations of less than 1 percent or 0.1 percent for carcinogens.

✓ PEL (OSHA permissible exposure limit); TLV (American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value); or other exposure limits (including ceiling and other short-term limits)

NOTE: For mixtures, if the employer assumes the mixture has the same hazards as its hazardous components (i.e., no test data exists about the mixture as a whole), the MSDS for each component will satisfy the requirements for a data sheet for the mixture. The MSDSs must be attached to one another and identified so they can be cross-referenced with the label. In addition, the MSDSs must include the PEL, TLV and other exposure limits for each ingredient that is determined to be a health hazard.

Section III. Physical and chemical characteristics

✓ Physical and chemical characteristics of the hazardous substance must be listed, including boiling and freezing points, vapor density, vapor pressure, specific gravity, melting point, evaporation rate, solubility in water, appearance and odor, and pH.
Section IV. Fire and explosion hazard data

✓ The flash point and flammable limits – lower explosive limit (LEL); upper explosive limit (UEL)
✓ Extinguishing media and special firefighting procedures
✓ Unusual fire and explosion hazards

Section V. Reactivity data

✓ Stability (stable/unstable) and conditions to avoid
✓ Incompatibility (materials to avoid)
✓ Hazardous decomposition or byproducts
✓ Hazardous polymerization (may occur/will not occur) and conditions to avoid

Section VI. Health hazard data

✓ Primary routes of entry: inhalation, skin, ingestion
✓ Health hazards (acute and chronic)
✓ Whether the chemical is listed with the National Toxicology Program (NTP) Annual Report on Carcinogens (latest edition) or has been found to be a potential carcinogen in the International Agency for Research on Cancer (IARC) Monographs (latest editions) or by OSHA
✓ Signs and symptoms of exposure
✓ Medical conditions generally aggravated by exposure
✓ Emergency and first aid procedures

Section VI. Precautions for safe handling and use

✓ Steps to be taken in case material is released or spilled
✓ Methods of waste disposal
✓ Precautions to be taken in handling and storing, and other precautions

Section VII. Control measures

✓ Respiratory protection (including the specified type)
✓ Ventilation (local exhaust, general mechanical, special)
✓ Personal protective equipment: protective gloves, eye protection, other protective clothing or equipment (e.g., body suits, face shields, etc.)

✓ Work and hygienic practices
Sample Material Safety Data Sheet

May be used to comply with OSHA’s Hazard Communication Standard, 29 CFR 1910.1200. Standard must be consulted for specific requirements.

<table>
<thead>
<tr>
<th>IDENTITY (As Used on Label and List)</th>
<th>Note: Blank spaces are not permitted. If any item is not applicable, or no information is available, the space must be marked to indicate that.</th>
</tr>
</thead>
</table>

| **Section I** |
|-----------------|--|
| **Manufacturer’s Name** | **Emergency Telephone Number** |
| **Address (Number, Street, City, State, and ZIP Code)** | **Telephone Number for Information** |
| **Date Prepared** | **Signature of Preparer (optional)** |

<table>
<thead>
<tr>
<th>Section II - Hazard Ingredients/Identity Information</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hazardous Components (Specific Chemical Identity; Common Name(s))</th>
<th>OSHA PEL</th>
<th>ACGIH TLV</th>
<th>Other Limits Recommended</th>
<th>%(optional)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section III - Physical/Chemical Characteristics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Boiling Point</th>
<th>Specific Gravity (H₂O = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure (mm Hg.)</td>
<td>Melting Point</td>
</tr>
<tr>
<td>Vapor Density (Air = 1)</td>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>Appearance and Odor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section IV - Fire and Explosion Hazard Data</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flash Point (Method Used)</th>
<th>Flammable Limits</th>
<th>LEL</th>
<th>UEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinguishing Media</td>
<td>Special Fire Fighting Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unusual Fire and Explosion Hazards</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Reproduce locally)
Section V - Reactivity Data

<table>
<thead>
<tr>
<th>Stability</th>
<th>Unstable</th>
<th>Conditions to Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incompatibility (Materials to Avoid)

Hazardous Decomposition or Byproducts

<table>
<thead>
<tr>
<th>Hazardous Polymerization</th>
<th>May Occur</th>
<th>Conditions to Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Will Not Occur</td>
<td></td>
</tr>
</tbody>
</table>

Section VI - Health Hazard Data

<table>
<thead>
<tr>
<th>Route(s) of Entry:</th>
<th>Inhalation?</th>
<th>Skin?</th>
<th>Ingestion?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health Hazards (Acute and Chronic)

<table>
<thead>
<tr>
<th>Carcinogenicity:</th>
<th>NTP?</th>
<th>IARC Monographs?</th>
<th>OSHA Regulated?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signs and Symptoms of Exposure

Medical Conditions Generally Aggravated by Exposure

Emergency and First Aid Procedures

Section VII - Precautions for Safe Handling and Use

Steps to Be Taken in Case Material is Released or Spilled

Waste Disposal Method

Precautions to Be taken in Handling and Storing

Other Precautions

Section VIII - Control Measures

Respiratory Protection (Specify Type)

<table>
<thead>
<tr>
<th>Ventilation</th>
<th>Local Exhaust</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical (General)</td>
<td>Other</td>
</tr>
</tbody>
</table>

Protective Gloves

<table>
<thead>
<tr>
<th>Eye Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Other Protective Clothing or Equipment

Work/Hygienic Practices
Material safety data sheet checklist

Each MSDS must contain the following information.

- ✓ Product or chemical identity used on the label
- ✓ Manufacturer’s name and address
- ✓ Chemical and common names of each hazardous ingredient
- ✓ Name, address and phone number for emergency information
- ✓ Preparation or revision date
- ✓ The hazardous chemical’s physical and chemical characteristics (such as vapor pressure and flashpoint)
- ✓ Physical hazards, including the potential for fire, explosion and reactivity
- ✓ Known health hazards
- ✓ OSHA permissible exposure limit (PEL), ACGIH threshold limit value (TLV) or other exposure limits
- ✓ Emergency and first-aid procedures
- ✓ Whether OSHA, NTP or IARC lists the ingredients as a carcinogen
- ✓ Precautions for safe handling and use
- ✓ Control measures such as engineering controls, work practices or personal protective equipment
- ✓ Primary routes of entry
- ✓ Procedures for spills, leaks and clean-up
Industrial sources of nonionizing radiation*

<table>
<thead>
<tr>
<th>Sources</th>
<th>Uses</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Broadcast | AM radio
FM radio
VHF TV
UHF TV | 535-1605 kHz.
88-108 MHZ
54-72, 76-88, 174-216 MHZ
470-890 MHZ |
| Cathode-ray tubes | Information processing systems such as CRT-based video display terminals; CRT-TV monitors | 10-50 kHz |
| Communications | Fixed systems; tropospheric scatter; satellite communication; microwave point-to-point (relay); high-frequency radio
Mobile systems; CB radios; walkie-talkies | 0.8-15 GHz; generally well controlled
27-800 MHZ; may produce high field strengths near antennae |
| Diathermy | Shortwave microwave | 13.56 and 27.12 MHZ; 915 and 2450 MHZ; may be continuous wave (CW) or pulsed wave (PW); consider duty cycle and leakage fields |
| Dielectric heaters | Seal/emboss plastics; cure glues, resins, particle boards, and panels; bake sand cores; mold appliance covers and auto parts; heat paper products | 1-100 MHZ; mainly 27.12 MHZ; may produce high E and/or H fields |
| Electronic equipment | Switching regulator in copying machines, microcomputers, etc. | Usually shielded |
| Electronic security systems | Intrusion alarms; theft detection; speed sensors; distance monitor; motion detection | Usually microwave frequencies |
| Electro-surgical devices | Cauterizing or coagulating tissues | May be CW or PW; solid state or spark-gap design |
| Hyperthermia | Same frequencies as diathermy | Applicators may be implantable |
| Induction heaters | Deep hardening; forging; welding; soft soldering; brazing; annealing; tempering metals and semiconductors; heat and draw optical fibers; epitaxial growth; plasma torching. | 250-500 kHz and ELF; may product high E and/or H fields. |
| Lasers | Etching/engraving, welding, optical and other medical surgery, communications, research | Gas, crystalline liquid and semi-conductor lasers |
| Microwave heaters (including microwave ovens) | Drying wood, paper, film, inks; thawing, cooking, baking, dehydrating, pasteurizing, and sterilizing foodstuffs; curing plastics; solvent desorption | 915 and 2450 MHZ |
| Plasma processors | Chemical milling; nitriding steel; polymerization; modifying polymer surfaces; depositing and hardening coatings and films; etching, cleaning, or stripping photoresist. | 0.1-27.12 MHZ; consider potential for exposure to plasma gases |
| Radar | Acquisition and tracking; air and auto traffic control; marine uses; surveillance | 1-15 GHz; usually PW |
| Spectroscopic instruments | Excite emissions from lamps/phototubes used in quantitative analysis | 2.45 GHz |
| Welding | Production of pipe, tube, and beam; spot welding. | RF-stabilized; 0.4-100 MHZ with harmonics |

Not all sources shown in this table are in the electromagnetic frequencies covered by ERTK.
Stress evaluation – heat

Heat stress may occur year-round in areas with heat-producing equipment, such as in foundries, kitchens or laundries. In Minnesota, high temperature and humidity are common during the summer, with daily temperatures routinely varying up to 30 degrees. This variation does not always allow people to become acclimatized and stay acclimatized, thereby increasing the risk of heat stress.

Heat stress results from a combination of internal heat production from doing work and external heat exposure from the environment. Both aspects need to be addressed properly to control heat stress.

Two commonly used instruments to obtain heat stress measurements are the heat stress monitor and a sling psychrometer. The heat stress monitor measures several temperatures simultaneously and accounts for radiant heat and air movement. The sling psychrometer is a much cheaper and simpler device, but does not take into account radiant heat, and air movement must be determined separately.

The measurements obtained from either of these instruments are converted to one value, the wet bulb globe temperature (WBGT), for determining compliance with Minnesota Rules. WBGT is an index of heat stress indicating relative comfort. It considers temperature, humidity and air movement. The calculated value can then be compared to those found in Minnesota Rules 5205.0110, subp. 2a (see page 2 of this Appendix).

Minnesota Rules 5205.0110, subp. 2a, is the Minnesota OSHA standard for heat exposure. The standard is based on wet bulb globe temperature and level of work activity. Typically, one will determine the WBGT by using a heat stress monitor, or by using a sling psychrometer to obtain effective temperature and then converting effective temperature to WBGT. (More information about measuring and calculating heat stress can be found in the MNOSHA Heat Stress booklet available on the MNOSHA website.) If the heat stress limit is approached or exceeded, Employee Right-to-Know requirements specified in Minnesota Rules 5206.0700, subp. 1 and 3, Training Program for Harmful Physical Agents, and Minnesota Rules 5206.1100, Labeling Harmful Physical Agents; Label Content, also apply.
5205.0110 Indoor workroom ventilation and temperature

Subp. 2a. **Heat stress.** The requirements of this subpart cover employee exposure to environmental heat conditions indoors.

A. The following definitions apply when assessing and controlling health hazards associated with extremes in temperature and humidity indoors.

1. “Wet bulb globe temperature index” or “WBGT” means a measure of the combined effect of air temperature, air speed, humidity, and radiation. \(\text{WBGT} = 0.7 \ T_{\text{nw}} + 0.3 \ T_g \).

2. “Natural wet-bulb temperature” or “\(T_{\text{nw}} \)” means temperature measured by a thermometer which has its sensor covered by a wetted cotton wick, exposed to natural air movement.

3. “Globe temperature” or “\(T_g \)” means temperature measured by a thermometer with its sensor inside a matte black globe, exposed to radiant heat, Vernon Globe or equivalent.

4. “Heavy work” means 350 to 500 kcal/hr (kilocalories per hour), for example: heavy lifting and pushing, shovel work.

5. “Moderate work” means 200 to 350 kcal/hr., for example: walking about with moderate lifting and pushing.

6. “Light work” means up to 200 kcal/hr., for example: sitting or standing performing light hand or arm work.

B. Employees shall not be exposed to indoor environmental heat conditions in excess of the values listed in Table 1. The values in Table 1 apply to fully clothed acclimatized workers.

Table 1. Two-hour time-weighted average permissible heat exposure limits.

<table>
<thead>
<tr>
<th>Work activity</th>
<th>WBGT, ºF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy work</td>
<td>77</td>
</tr>
<tr>
<td>Moderate work</td>
<td>80</td>
</tr>
<tr>
<td>Light work</td>
<td>86</td>
</tr>
</tbody>
</table>

C. Employees with exposure to heat shall be provided training according to part 5206.0700, subparts 1 and 3.
Sources of information

Minnesota OSHA offices

Questions concerning the Employee Right-to-Know standard may be directed to the following Minnesota OSHA offices:

<table>
<thead>
<tr>
<th>Minnesota OSHA</th>
<th>Minnesota OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>443 Lafayette Road N.</td>
<td>525 Lake Ave. S., Suite 330</td>
</tr>
<tr>
<td>St. Paul, MN 55155-4307</td>
<td>Duluth, MN 55802-2368</td>
</tr>
<tr>
<td>Phone: (651) 284-5050</td>
<td>Phone: (218) 733-7830</td>
</tr>
<tr>
<td>Fax: (651) 284-5741</td>
<td>Fax: (218) 725-7722</td>
</tr>
<tr>
<td>Toll-free: 1-877-470-6742</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minnesota OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mankato Place</td>
</tr>
<tr>
<td>12 Civic Center Plaza, Suite 1620</td>
</tr>
<tr>
<td>Mankato, MN 56001-7781</td>
</tr>
<tr>
<td>Phone: (507) 304-6262</td>
</tr>
<tr>
<td>Fax: (507) 389-2746</td>
</tr>
</tbody>
</table>

Minnesota OSHA rules and standards

The most recent copy of the Minnesota Department of Labor and Industry’s Occupational Safety and Health Rules – which includes the Employee Right-to-Know standard – is available from:

<table>
<thead>
<tr>
<th>Minnesota’s Bookstore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Administration</td>
</tr>
<tr>
<td>660 Olive Street</td>
</tr>
<tr>
<td>St. Paul, MN 55155</td>
</tr>
<tr>
<td>(651) 297-3000 or 1-800-657-3757</td>
</tr>
</tbody>
</table>

Federal OSHA standards

Resources for hazardous substance and harmful physical agent information

The Employee Right-to-Know standard requires the manufacturer of a hazardous substance or mixture of hazardous substances, or of equipment that generates a harmful physical agent, to provide information to the employer so the employer can comply with the standard. If additional information about hazardous substances and harmful physical agents is needed, the following documents may be useful.

Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices (latest edition), available from:
 American Conference of Governmental Industrial Hygienists (ACGIH)
 1330 Kemper Meadow Drive
 Cincinnati, OH 45240-1634
 (513) 742-2020
 www.acgih.org

Workplace Environmental Exposure Level Guides (latest edition), available from:
 American Industrial Hygiene Association (AIHA)
 Attn.: Customer Service
 P.O. Box 79673
 Baltimore, MD 21279-0673
 (301) 843-3064
 www.aiha.org

Recommendations for Occupational Safety and Health Standards available on the National Institute for Occupational Safety and Health (NIOSH) website at www.cdc.gov/niosh or from:
 Publications Dissemination Office
 Mail Stop C-13
 4676 Columbia Pkwy.
 Cincinnati, OH 45226-1998
 1-800-232-4636

Additional resources for heat stress information

NIOSH Safety and Health Topic: Heat Stress available at www.cdc.gov/niosh/topics/heatstress

Additional resources for noise information

Federal OSHA Safety and Health Topics: Noise and Hearing Conservation available at www.osha.gov/SLTC/noisehearingconservation
NIOSH Safety and Health Topic: Noise and Hearing Loss Prevention available at www.cdc.gov/niosh/topics/noise

Additional resources for radiation information

Minnesota Department of Health
Environmental Health Division
Radiation Control (ionizing)
625 Robert Street N.
P.O. Box 64975
St. Paul, MN 55164-0975
Phone: (651) 201-4545
www.health.state.mn.us/divs/eh/radiation

Federal OSHA Safety and Health Topics: Radiofrequency and Microwave Radiation available at www.osha.gov/SLTC/radiofrequencyradiation

Federal OSHA Safety and Health Topics: Laser Hazards available at www.osha.gov/SLTC/laserhazards

Resources for infectious agents information

Available on the Centers for Disease Control and Prevention (CDC) website at www.cdc.gov:

✓ *Biosafety in Microbiological and Biomedical Laboratories, 5*th edition

✓ *Guidelines for Preventing the Transmission of Mycobacterium Tuberculosis in Health Care Settings,* 2005

✓ *Guideline for Infection Control in Health Care Personnel,* 1998

✓ *Guidelines for Infection Control in Dental Health Care Settings,* 2003

✓ *Prevention and Control of Tuberculosis in Correctional and Detention Facilities: Recommendations from CDC,* 2006
Glossary of terms and abbreviations

ACGIH – American Conference of Governmental Industrial Hygienists, Inc.

Acidosis – a condition of decreased alkalinity of the blood

Action level – the exposure level that triggers some but not all requirements in certain OSHA standards

Acute toxicity – the adverse effects resulting from a single dose of or exposure to a substance

Alkali – any compound having highly basic properties

Anesthesia – loss of sensation or feeling

Asphyxia – lack of oxygen and, thus, interference with the oxygenation of the blood

Asphyxiant – a vapor or gas that can cause unconsciousness or death by suffocation

Boiling point, B.P. – the temperature at which the vapor pressure of a liquid is equal to the surrounding atmospheric pressure

B.Z. – breathing zone

Carbon dioxide (CO₂) – a colorless, odorless, incombustible gas formed during respiration, combustion and organic decomposition, and used in food refrigeration, carbonated beverages, inert atmospheres, fire extinguishers and aerosols; high concentrations can create hazardous oxygen-deficient environments that can cause asphyxiation

Carbon monoxide (CO) – a colorless, odorless, highly poisonous gas, formed by the incomplete combustion of carbon or a carbonaceous material, including gasoline; a chemical asphyxiant, it reduces the blood’s ability to carry oxygen

Carcinogen – a chemical that has been demonstrated to cause cancer in humans

Ceiling value, C. – the concentration that should not be exceeded during any part of the working exposure

CFM – volume of air flow, cubic feet per minute

Chemical abstract services (CAS) number – an assigned number used to identity a material; the numbers have no chemical significance

Chemical pneumonitis – inflammation of the lungs due to chemical irritation

CNS – central nervous system

Combustible – OSHA defines combustible liquid within the hazard communication law as any liquid having a flash point at or above 100°F (38°C), but below 200°F (93.3°C)

Conjunctivitis – inflammation of the conjunctiva, the delicate membrane that lines the eyelids
Corrosive – a chemical that causes visible destruction of or irreversible alterations in living tissue

Cutaneous – pertaining to the skin

Dermal – used on or applied to the skin

Dermatitis – inflammation of the skin

Dyspnea – a sense of difficulty in breathing; shortness of breath

Edema – an abnormal accumulation of clear, watery fluid in the tissues

Evaporation rate – the rate at which a particular material will vaporize from the liquid or solid state to the gas state

f/cc – fibers per cubic centimeter of air

Flammable – any solid, liquid or gas that will ignite easily and burn rapidly

Flash point – the lowest temperature at which a flammable liquid gives off sufficient vapors to form an ignitable mixture

FPM – velocity of air flow, feet per minute

Grounding – a safety practice to conduct an electrical charge to the ground

Hazardous material – a substance or mixture of substances having properties capable of producing adverse health or safety effects

Hematuria – the presence of blood in the urine

High-efficiency particulate air-purifying (HEPA) filter – the most efficient mechanical filter commonly available

IARC – International Agency for Research on Cancer

IDLH – immediately dangerous to life and health

Jaundice – yellowish discoloration of tissues

LC 50 – the lethal concentration of a material in air that on the basis of laboratory tests is expected to kill 50 percent of a group of test animals

LD 50 – the lowest published lethal dose that will kill 50 percent of a group of test animals

LFM or lfm – velocity of air flow, linear feet per minute

Lower explosive limit (LEL) – refers to the lowest concentration of gas or vapor that will burn or explode if an ignition source is present
mg/m – milligrams of material per cubic meter of air

MSDS – material safety data sheet

Mutagen – a chemical or physical agent that induces genetic mutations

Narcosis – stupor or unconsciousness produced by a narcotic drug or chemical

NFPA – National Fire Protection Association

NIOSH – National Institute for Occupational Safety and Health

NTP – National Toxicology Program

Odor threshold – the lowest concentration of a materials vapor in air that can be detected by smell

Particulate – small, separate pieces of an airborne material

Peak – maximum instantaneous allowable exposure for hazardous substances

Permissible exposure limit (PEL) – an exposure limit established by OSHA

pH – the value that represents the acidity or alkalinity of an aqueous solution. (pH 7 = neutral; pH 0 = strong acid; pH 14 = strong alkaline)

ppb – parts per billion; parts of material per billion parts of air

ppm – parts per million; parts of material per million parts of air

Psychotropic – acting on the mind

Pulmonary edema – fluid in the lungs

Pyrophoric – a material that will ignite spontaneously in air below 130°F (54°C)

Reactivity – a description of the tendency of a substance to undergo chemical reaction either by itself or with other materials with the release of energy

Reproductive health hazard – any agent that has a harmful effect on the adult male or female reproductive system or the developing fetus or child

Sensitization – an immune-response reaction state in which further exposure elicits an immune or allergic response

Silicosis – a condition of massive fibrosis of the lungs causing shortness of breath

Skin – notation used to indicate possible exposure to a chemical by absorption through the skin

STEL – short-term exposure limit
Subcutaneous – beneath the skin

Target organ effects – chemically caused effects upon specifically listed organs and systems

Teratogen – an agent or substance that caused physical defects in a developing embryo

Threshold limit value (TLV) – a term established by ACGIH to express the airborne concentration of a material to which nearly all workers can be exposed day after day without adverse effects

Time-weighted average (TWA) – the expression for average exposure that accounts for fluctuating levels during a given time period

Unstable – tending toward decomposition or other unwanted chemical change during normal handling or storage

Upper explosive limit (UEL) – the highest concentration of a material in air that will produce an explosion

Vapor density – the weight of a vapor or gas compared to the weight of an equal volume of air

Vertigo – a feeling of revolving in space; dizziness, giddiness

Viscosity – measurement of the flow properties of a material

Water reactive – a chemical that releases a hazardous gas, often violently, upon contact with water